156 lines
5.4 KiB
Python
156 lines
5.4 KiB
Python
#!/usr/bin/python3
|
|
|
|
import spintrum
|
|
import math
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import scipy.optimize
|
|
import multiprocessing
|
|
import mpmath
|
|
|
|
mpmath.mp.dps = 25
|
|
|
|
|
|
def filter_spectrum(spec, freq_lim):
|
|
x_axis = np.array([])
|
|
y_axis = np.array([])
|
|
for i in range(len(freq_lim)):
|
|
for j in range(len(spec["x"])):
|
|
if freq_lim[i][0] <= spec["x"][j] <= freq_lim[i][1]:
|
|
x_axis = np.append(x_axis,spec["x"][j])
|
|
y_axis = np.append(y_axis,spec["y"][j])
|
|
return {"x": x_axis, "y": y_axis}
|
|
|
|
|
|
with open("../data/benzeneSignal.txt") as f:
|
|
data = f.readlines()
|
|
data = np.array(list(map(np.double,data)))
|
|
data = data - np.mean(data)
|
|
|
|
#defining initial parameters
|
|
|
|
gammas = [4257.7e4,4257.7e4,4257.7e4,4257.7e4,4257.7e4,4257.7e4,1070.8e4]
|
|
multiplicities = [2, 2, 2, 2, 2, 2, 2]
|
|
|
|
gammah = 2*math.pi*4257.7e4
|
|
BThermal = 1.8e0
|
|
T2 = 1
|
|
points = len(data)
|
|
sample_rate = 2000
|
|
spectrum_range = [[5, 50], [80, 119], [121, 179], [181, 239], [241, 299]]
|
|
jCouplings = \
|
|
[
|
|
[0,0,0,0,0,0,0],
|
|
[0,0,0,0,0,0,0],
|
|
[0,0,0,0,0,0,0],
|
|
[0,0,0,0,0,0,0],
|
|
[0,0,0,0,0,0,0],
|
|
[0,0,0,0,0,0,0],
|
|
[0,0,0,0,0,0,0],
|
|
]
|
|
|
|
|
|
experimental_spectrum = filter_spectrum(spintrum.FFTSpectralDensity(data, sample_rate), spectrum_range)
|
|
|
|
|
|
gen = spintrum.SpinSimulator(gyromagneticRatios=gammas,
|
|
jCouplings=jCouplings,
|
|
spinMultiplicities=multiplicities,
|
|
doPrint=False)
|
|
|
|
spinOp = spintrum.SpinOperations()
|
|
spinOp.add_operation(spintrum.SpinOperations.OPERATION__THERMAL_POPULATE,
|
|
{'Bx': 0, 'By': 0, 'Bz': BThermal, 'T': 293.778})
|
|
spinOp.add_operation(spintrum.SpinOperations.OPERATION__TIP_SPINS,
|
|
{'direction': 'y', 'BVsTArea': 4*math.pi/gammah})
|
|
spinOp.add_operation(spintrum.SpinOperations.OPERATION__SET_HAMILTONIAN,
|
|
{'Bx': 0, 'By': 0, 'Bz': 0})
|
|
spinOp.add_operation(spintrum.SpinOperations.OPERATION__INIT_TIME_INDEPENDENT_EVOLUTION,
|
|
{'samplingRate': sample_rate, 'measurementDirection': 'z'})
|
|
spinOp.add_operation(spintrum.SpinOperations.OPERATION__EVOLVE_TIME_INDEPENDENT,
|
|
{'points': points, 'threads': multiprocessing.cpu_count()})
|
|
|
|
gen.update_parameters(spinOperations=spinOp, jCouplings=jCouplings, gyromagneticRatios=gammas)
|
|
|
|
|
|
def generate_spectrum(params):
|
|
|
|
amplitude = params[13]
|
|
T2 = params[14]
|
|
jCouplings = \
|
|
[
|
|
[0, params[0], params[1], params[2],params[1],params[0],params[3]],
|
|
[0, 0, params[4], params[5], params[6], params[7], params[8]],
|
|
[0, 0, 0, params[9], params[10], params[6], params[11]],
|
|
[0, 0, 0, 0, params[9], params[5], params[12]],
|
|
[0, 0, 0, 0, 0, params[4], params[11]],
|
|
[0, 0, 0, 0, 0, 0, params[8]],
|
|
[0, 0, 0, 0, 0, 0, 0],
|
|
]
|
|
|
|
|
|
gen.update_parameters(jCouplings=jCouplings)
|
|
|
|
signal = amplitude*gen.simulate()
|
|
|
|
signal = signal - np.mean(signal)
|
|
signal = [signal[i] * math.exp(-i / sample_rate / T2) for i in range(len(signal))]
|
|
|
|
fft = filter_spectrum(spintrum.FFTSpectralDensity(signal, sample_rate), spectrum_range)
|
|
|
|
# plt.plot(fft['x'],fft['y'],realSpectrum['x'],realSpectrum['y'])
|
|
# plt.show()
|
|
|
|
return fft
|
|
|
|
def objective_func(params):
|
|
print(params)
|
|
spect = generate_spectrum(params)
|
|
func_value = np.sqrt(np.sum((spect['y'] - experimental_spectrum['y']) ** 2))
|
|
print('Objective function value:', func_value)
|
|
return func_value
|
|
|
|
pars = np.array([7.54,1.38,0.661,158.354,7.543,1.377,0.658,1.373,1.133,7.535,1.382,7.607,-1.296,0.00002,6])
|
|
#pars = np.array([-1.06785235e+00,2.26791767e+02,4.26684847e+00,4.53620118e-05,2.73284204e+00])
|
|
|
|
# get_objective_func(pars)
|
|
|
|
optimum_params = scipy.optimize.fmin(objective_func, pars, ftol = 5.0e-13, maxfun = 1)
|
|
|
|
opt_j_couplings = mpmath.matrix([
|
|
[0, optimum_params[0], optimum_params[1], optimum_params[2], optimum_params[1], optimum_params[0], optimum_params[3]],
|
|
[0, 0, optimum_params[4], optimum_params[5], optimum_params[6], optimum_params[7], optimum_params[8]],
|
|
[0, 0, 0, optimum_params[9], optimum_params[10], optimum_params[6], optimum_params[11]],
|
|
[0, 0, 0, 0, optimum_params[9], optimum_params[5], optimum_params[12]],
|
|
[0, 0, 0, 0, 0, optimum_params[4], optimum_params[11]],
|
|
[0, 0, 0, 0, 0, 0, optimum_params[8]],
|
|
[0, 0, 0, 0, 0, 0, 0],
|
|
])
|
|
|
|
CorrelationMatrix = spintrum.get_correlation_matrix(optimum_params, generate_spectrum, objective_func)
|
|
print('Correlation matrix: ', '\n', CorrelationMatrix)
|
|
|
|
print('Parameters at minimum: ','\n', optimum_params)
|
|
errorbars = spintrum.get_errorbars(CorrelationMatrix)
|
|
print('Standard deviations of parameters: ','\n',errorbars)
|
|
|
|
#writout to file
|
|
np.set_printoptions(suppress=True, precision=20)
|
|
fr = open("../data/benzeneFitResult.txt","w")
|
|
fr.write('Minimum at J-couplings:\n')
|
|
fr.write(str(opt_j_couplings) + '\n')
|
|
fr.write('Minimum at paramters:\n')
|
|
fr.write(str(optimum_params) + '\n')
|
|
fr.write('Parameters standard deviations:\n')
|
|
fr.write(str(errorbars)+'\n')
|
|
fr.write('Parameters correlation matrix:\n')
|
|
fr.write(str(CorrelationMatrix)+'\n')
|
|
fr.write('Minimum objective function value: ' + str(objective_func(optimum_params)))
|
|
fr.close()
|
|
|
|
fft_final = generate_spectrum(optimum_params)
|
|
|
|
plt.plot(fft_final['x'], fft_final['y'], experimental_spectrum['x'], experimental_spectrum['y'])
|
|
|
|
plt.show()
|