#!/usr/bin/python3 import spintrum import math import matplotlib.pyplot as plt import numpy as np import scipy.optimize import multiprocessing import mpmath mpmath.mp.dps = 25 def filter_spectrum(spec, freq_lim): x_axis = np.array([]) y_axis = np.array([]) for i in range(len(freq_lim)): for j in range(len(spec["x"])): if freq_lim[i][0] <= spec["x"][j] <= freq_lim[i][1]: x_axis = np.append(x_axis,spec["x"][j]) y_axis = np.append(y_axis,spec["y"][j]) return {"x": x_axis, "y": y_axis} with open("../data/benzeneSignal.txt") as f: data = f.readlines() data = np.array(list(map(np.double,data))) data = data - np.mean(data) #defining initial parameters gammas = [4257.7e4,4257.7e4,4257.7e4,4257.7e4,4257.7e4,4257.7e4,1070.8e4] multiplicities = [2, 2, 2, 2, 2, 2, 2] gammah = 2*math.pi*4257.7e4 BThermal = 1.8e0 T2 = 1 points = len(data) sample_rate = 2000 spectrum_range = [[5, 50], [80, 119], [121, 179], [181, 239], [241, 299]] jCouplings = \ [ [0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0,0], [0,0,0,0,0,0,0], ] experimental_spectrum = filter_spectrum(spintrum.FFTSpectralDensity(data, sample_rate), spectrum_range) gen = spintrum.SpinSimulator(gyromagneticRatios=gammas, jCouplings=jCouplings, spinMultiplicities=multiplicities, doPrint=False) spinOp = spintrum.SpinOperations() spinOp.add_operation(spintrum.SpinOperations.OPERATION__THERMAL_POPULATE, {'Bx': 0, 'By': 0, 'Bz': BThermal, 'T': 293.778}) spinOp.add_operation(spintrum.SpinOperations.OPERATION__TIP_SPINS, {'direction': 'y', 'BVsTArea': 4*math.pi/gammah}) spinOp.add_operation(spintrum.SpinOperations.OPERATION__SET_HAMILTONIAN, {'Bx': 0, 'By': 0, 'Bz': 0}) spinOp.add_operation(spintrum.SpinOperations.OPERATION__INIT_TIME_INDEPENDENT_EVOLUTION, {'samplingRate': sample_rate, 'measurementDirection': 'z'}) spinOp.add_operation(spintrum.SpinOperations.OPERATION__EVOLVE_TIME_INDEPENDENT, {'points': points, 'threads': multiprocessing.cpu_count()}) gen.update_parameters(spinOperations=spinOp, jCouplings=jCouplings, gyromagneticRatios=gammas) def generate_spectrum(params): amplitude = params[13] T2 = params[14] jCouplings = \ [ [0, params[0], params[1], params[2],params[1],params[0],params[3]], [0, 0, params[4], params[5], params[6], params[7], params[8]], [0, 0, 0, params[9], params[10], params[6], params[11]], [0, 0, 0, 0, params[9], params[5], params[12]], [0, 0, 0, 0, 0, params[4], params[11]], [0, 0, 0, 0, 0, 0, params[8]], [0, 0, 0, 0, 0, 0, 0], ] gen.update_parameters(jCouplings=jCouplings) signal = amplitude*gen.simulate() signal = signal - np.mean(signal) signal = [signal[i] * math.exp(-i / sample_rate / T2) for i in range(len(signal))] fft = filter_spectrum(spintrum.FFTSpectralDensity(signal, sample_rate), spectrum_range) # plt.plot(fft['x'],fft['y'],realSpectrum['x'],realSpectrum['y']) # plt.show() return fft def objective_func(params): print(params) spect = generate_spectrum(params) func_value = np.sqrt(np.sum((spect['y'] - experimental_spectrum['y']) ** 2)) print('Objective function value:', func_value) return func_value pars = np.array([7.54,1.38,0.661,158.354,7.543,1.377,0.658,1.373,1.133,7.535,1.382,7.607,-1.296,0.00002,6]) #pars = np.array([-1.06785235e+00,2.26791767e+02,4.26684847e+00,4.53620118e-05,2.73284204e+00]) # get_objective_func(pars) optimum_params = scipy.optimize.fmin(objective_func, pars, ftol = 5.0e-13, maxfun = 1) opt_j_couplings = mpmath.matrix([ [0, optimum_params[0], optimum_params[1], optimum_params[2], optimum_params[1], optimum_params[0], optimum_params[3]], [0, 0, optimum_params[4], optimum_params[5], optimum_params[6], optimum_params[7], optimum_params[8]], [0, 0, 0, optimum_params[9], optimum_params[10], optimum_params[6], optimum_params[11]], [0, 0, 0, 0, optimum_params[9], optimum_params[5], optimum_params[12]], [0, 0, 0, 0, 0, optimum_params[4], optimum_params[11]], [0, 0, 0, 0, 0, 0, optimum_params[8]], [0, 0, 0, 0, 0, 0, 0], ]) CorrelationMatrix = spintrum.get_correlation_matrix(optimum_params, generate_spectrum, objective_func) print('Correlation matrix: ', '\n', CorrelationMatrix) print('Parameters at minimum: ','\n', optimum_params) errorbars = spintrum.get_errorbars(CorrelationMatrix) print('Standard deviations of parameters: ','\n',errorbars) #writout to file np.set_printoptions(suppress=True, precision=20) fr = open("../data/benzeneFitResult.txt","w") fr.write('Minimum at J-couplings:\n') fr.write(str(opt_j_couplings) + '\n') fr.write('Minimum at paramters:\n') fr.write(str(optimum_params) + '\n') fr.write('Parameters standard deviations:\n') fr.write(str(errorbars)+'\n') fr.write('Parameters correlation matrix:\n') fr.write(str(CorrelationMatrix)+'\n') fr.write('Minimum objective function value: ' + str(objective_func(optimum_params))) fr.close() fft_final = generate_spectrum(optimum_params) plt.plot(fft_final['x'], fft_final['y'], experimental_spectrum['x'], experimental_spectrum['y']) plt.show()